Bonjour, est-ce possible de m'aider pour mon devoirs svp : Détermination d'un polynôme : On considère un polynome du 3e degré P(x)=ax^3+bx^2+cx+d où a, b, c, et
Mathématiques
Girlman123
Question
Bonjour, est-ce possible de m'aider pour mon devoirs svp :
Détermination d'un polynôme :
On considère un polynome du 3e degré P(x)=ax^3+bx^2+cx+d où a, b, c, et d désignent des nombres réels
a) déterminer l'expression de P'(x) en fonction de a, b et c
b) les points A(0;-4), B(1;-4), C(3;2) appartiennent à la courbe de f tracée ci-dessous. La tangente à la courbe en A a également été tracée.
Traduire les informations graphique utiles en données algébriques afin de déterminer l'expression de P(x)
Détermination d'un polynôme :
On considère un polynome du 3e degré P(x)=ax^3+bx^2+cx+d où a, b, c, et d désignent des nombres réels
a) déterminer l'expression de P'(x) en fonction de a, b et c
b) les points A(0;-4), B(1;-4), C(3;2) appartiennent à la courbe de f tracée ci-dessous. La tangente à la courbe en A a également été tracée.
Traduire les informations graphique utiles en données algébriques afin de déterminer l'expression de P(x)
1 Réponse
-
1. Réponse aleksioff
Bonjour!
a) Alors tu sais que tu as un polynôme de degrés 3. Pour le dériver, il te suffit de dériver chacun des termes séparés par un « + » séparément.
Tu obtiens donc: P’(x)=3ax^2+2bx+c
Il convient de rappeler que la dérivée de x^n est nx^(n-1).
b)Tu as un système de 3 équations:
Dans la première tu remplaces x par 0 lorsque y vaut -4
Donc: d=-4
La seconde x vaut 1 lorsque y vaut -4
a+b+c+d=-4
Enfin x vaut 3 lorsque y vaut 2
27a+9b+3c+d=2
Ensuite P’(a) est le coefficient directeur de la tangente en A.
P’(a)=c et d’après le graphe, tu as le coefficient directeur qui vaut 2. Donc c=2
Au final tu as c=2, d=-4
Tu résous le système et sans erreur de ma part tu devrais trouver a=1 et b=-3.
En espérant avoir pu t’aider :)
Alexis